B.Sc. Semester III (Honours) Examination, 2018-19
 PHYSICS

Course ID : 32411

Course Code : SHPHS-301C-5(T)
Course Title : Mathematical Physics II
Time: 1 Hour 15 Minutes
Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Section-I

1. Answer any five questions:
(a) Complex number $Z=1+\sqrt{3} \hat{\imath}$, write it in polar form.
(b) State Cauchy's integral theorem.
(c) What is cyclic co-ordinate?
(d) If λ be an eigenvalue of a matrix A (non-zero matrix), show that λ^{-1} is an eigenvalue of the matrix A^{-1}.
(e) What is the nature of singular point for a complex function $f(z)=\frac{\sin z}{z}$?
(f) Calculate the probability of obtaining 4 heads in 6 tosses using an unbiased coin.
(g) Define a linear operator.
(h) Write down Lagrangian equation for a simple pendulum.

Section-II

Answer any two questions:
2. (a) Prove that $u=e^{-x}(x \sin y-y \cos y)$ is harmonic.
(b) Find v such that $f(z)=(u+i v)$ is analytic.
$2+3=5$
3. Find the eigenvalues and eigenvectors of the given matrix.

$$
A=\left(\begin{array}{rrr}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right)
$$

4. Show that shortest distance between two points is always a straight line.
5. Show that Dirac delta function can be represented as a limit of a Gaussian function and rectangular function.

Section-III

Answer any one question:
$10 \times 1=10$
6. (a) Show that eigenvalues of a Hermitian matrix are real.
(b) What is similarity transformation? Diagonalize the matrix $A=\left(\begin{array}{ll}4 & 1 \\ 2 & 3\end{array}\right)$ through similarity transformation.
(c) Prove that the matrix $\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ is unitary matrix.
7. (a) Evaluate $\int_{0}^{\infty} \frac{d x}{x^{6}+1}$.
(b) Find the residue of the complex function $f(z)=\frac{e^{z}}{z^{4}}$.
(c) Evaluate $\int_{1-i}^{2+i}(2 x+i y+1) d z$ along the straight line joining $(1-i)$ and $(2+i) . \quad 5+2+3=10$

